612 research outputs found

    Visuelle Benutzermodellierung mit Tracking und Zeigegestenerkennung fĂŒr einen humanoiden Roboter

    Get PDF

    Possible Digenic Disease in a Caucasian Family with COL4A3 and COL4A5 Mutations

    Get PDF
    Microscopic hematuria is a common feature of patients with Alport syndrome, a familial nephropathy due to mutations in COL4A3, COL4A4 or COL4A5. These genes encode for α3, α4, and α5 type IV collagen polypeptide chains (collagen IV α345), crucial for the structural component of the glomerular basement membrane. Even patients with mild phenotype, namely isolated microhematuria (X-linked females with thin basement membrane on electron microscopy or heterozygous carriers of COL4A3 or COL4A4 mutations), can potentially progress to proteinuria and to end-stage renal disease. Recent pedigree analyses provided evidence for digenic inheritance of Alport syndrome by concomitant mutations in COL4A3/COL4A4 or COL4A4/COL4A5. We describe a Caucasian family with concomitant COL4A3 and COL4A5 mutations, consisting of a novel c.4484A>G COL4A3 (p.Gln1495Arg) mutation and a previously reported c.1871G>A COL4A5 (p.Gly624Asp) mutation. Our segregation analysis raises the possibility that Alport syndrome resembles also digenic inheritance by COL4A3/COL4A5

    Reversible Switching of Spiropyran Molecules in Direct Contact With a Bi(111) Single Crystal Surface

    Get PDF
    Photochromic molecular switches immobilized by direct contact with surfaces typically show only weak response to optical excitation, which often is not reversible. In contrast, here, it is shown that a complete and reversible ring-opening and ring-closing reaction of submonolayers of spironaphthopyran on the Bi(111) surface is possible. The ring opening to the merocyanine isomer is initiated by ultraviolet light. Switching occurs in a two-step process, in which after optical excitation, an energy barrier needs to be overcome to convert to the merocyanine form. This leads to a strong temperature dependence of the conversion efficiency. Switching of the merocyanine isomer back to the closed form is achieved by a temperature increase. Thus, the process can be repeated in a fully reversible manner, in contrast to previously studied nitrospiropyran molecules on surfaces. This is attributed to the destabilization of the merocyanine isomer by the electron-donating nature of the naphtho group and the reduced van der Waals interaction of the Bi(111) surface. The result shows that molecules designed for switching in solutions need to be modified to function in direct contact with a surface

    Light-induced photoisomerization of a diarylethene molecular switch on solidsurfaces

    Get PDF
    Diarylethenes are molecular switches, the state of which can efficiently be controlled by illumination with ultraviolet or visible light. To use the change in the molecular properties when switching between the two states for a specific function, direct contact with solid surfaces is advantageous as it provides immobilization. Here we present a study of a diarylethene derivate (T-DAE, 1,2-bis(5-methyl-2-phenylthiazol-4-yl)cyclopent-1-ene) in direct contact with highly ordered graphite as well as with semimetallic Bi(1 1 1) surfaces by x-ray photoelectron spectroscopy, x-ray absorption spectroscopy and simulated spectra based on density functional theory. On both surfaces, the molecule can be switched from its open to its closed form by 325–475 nm broadband or ultraviolet illumination. On the other hand, back isomerization to the ring-open T-DAE was not possible

    Microvascular inflammation is a risk factor in kidney transplant recipients with very late conversion from calcineurin inhibitor-based regimens to belatacept

    Get PDF
    Background: In de novo kidney transplant recipients (KTR) treatment with belatacept has been established as a comparable option as maintenance immunosuppression, preferably as a strategy to convert from calcineurin inhibitor (CNI)- to belatacept-based immunosuppression. Switch to belatacept demonstrated improved renal function in patients with CNI-induced nephrotoxicity, but risk of transplant rejection and the development of donor-specific antibodies (DSA) are still a matter of debate. Only few data are available in patients at increased immunological risk and late after transplantation. Methods: We analyzed 30 long-term KTR (including 2 combined pancreas-KTR) converted from CNI to belatacept > 60 months after transplantation with moderate to severe graft dysfunction (GFR ≀ 45 mL/min). Biopsies were classified according to the Banff 2015 criteria. Group differences were assessed in a univariate analysis using Mann Whitney U or Chi square test, respectively. Multivariate analysis of risk factors for treatment failure was performed using a binary logistic regression model including significant predictors from univariate analysis. Fifty-six KTR matched for donor and recipient characteristics were used as a control cohort remaining under CNI-treatment. Results: Patient survival in belatacept cohort at 12/24 months was 96.7%/90%, overall graft survival was 76.7 and 60.0%, while graft survival censored for death was 79.3%/66.7%. In patients with functioning grafts, median GFR improved from 22.5 mL/min to 24.5 mL/min at 24 months. Positivity for DSA at conversion was 46.7%. From univariate analysis of risk factors for graft loss, GFR < 25 mL/min (p = 0.042) and Banff microvascular inflammation (MVI) sum score ≄ 2 (p = 0.023) at conversion were significant at 24 months. In the analysis of risk factors for treatment failure, a MVI sum score ≄ 2 was significant univariately (p = 0.023) and in a bivariate (p = 0.037) logistic regression at 12 months. DSA-positivity was neither associated with graft loss nor treatment failure. The control cohort had comparable graft survival outcomes at 24 months, albeit without increase of mean GFR in patients with functioning grafts (ΔGFR of - 3.6 ± 8.5 mL/min). Conclusion: Rescue therapy with conversion to belatacept is feasible in patients with worsening renal function, even many years after transplantation. The benefit in patients with MVI and severe GFR impairment remains to be investigated

    Receptor oligomerization and beyond: a case study in bone morphogenetic proteins

    Get PDF
    BACKGROUND: Transforming growth factor (TGF)ÎČ superfamily members transduce signals by oligomerizing two classes of serine/threonine kinase receptors, termed type I and type II. In contrast to the large number of ligands only seven type I and five type II receptors have been identified in mammals, implicating a prominent promiscuity in ligand-receptor interaction. Since a given ligand can usually interact with more than one receptor of either subtype, differences in binding affinities and specificities are likely important for the generation of distinct ligand-receptor complexes with different signaling properties. RESULTS: In vitro interaction analyses showed two different prototypes of binding kinetics, 'slow on/slow off' and 'fast on/fast off'. Surprisingly, the binding specificity of ligands to the receptors of one subtype is only moderate. As suggested from the dimeric nature of the ligands, binding to immobilized receptors shows avidity due to cooperative binding caused by bivalent ligand-receptor interactions. To compare these in vitro observations to the situation in vivo, binding studies on whole cells employing homodimeric as well as heterodimeric bone morphogenetic protein 2 (BMP2) mutants were performed. Interestingly, low and high affinity binding sites were identified, as defined by the presence of either one or two BMP receptor (BMPR)-IA receptor chains, respectively. Both sites contribute to different cellular responses in that the high affinity sites allow a rapid transient response at low ligand concentrations whereas the low affinity sites facilitate sustained signaling but higher ligand concentrations are required. CONCLUSION: Binding of a ligand to a single high affinity receptor chain functioning as anchoring molecule and providing sufficient complex stability allows the subsequent formation of signaling competent complexes. Another receptor of the same subtype, and up to two receptors of the other subtype, can then be recruited. Thus, the resulting receptor arrangement can principally consist of four different receptors, which is consistent with our interaction analysis showing low ligand-receptor specificity within one subtype class. For BMP2, further complexity is added by the fact that heterooligomeric signaling complexes containing only one type I receptor chain can also be found. This indicates that despite prominent ligand receptor promiscuity a manifold of diverse signals might be generated in this receptor limited system

    Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite

    Get PDF
    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies

    Patterns of Positive Selection and Neutral Evolution in the Protein-Coding Genes of Tetraodon and Takifugu

    Get PDF
    Recent genome-wide analyses have revealed patterns of positive selection acting on protein-coding genes in humans and mammals. To assess whether the conclusions drawn from these analyses are valid for other vertebrates and to identify mammalian specificities, I have investigated the selective pressure acting on protein-coding genes of the puffer fishes Tetraodon and Takifugu. My results indicate that the strength of purifying selection in puffer fishes is similar to previous reports for murids but stronger in hominids, which have a smaller population size. Gene ontology analyses show that more than half of the biological processes targeted by positive selection in mammals are also targeted in puffer fishes, highlighting general patterns for vertebrates. Biological processes enriched with positively selected genes that are shared between mammals and fishes include immune and defense responses, signal transduction, regulation of transcription and several of their descendent terms. Mammalian-specific processes displaying an excess of positively selected genes are related to sensory perception and neurological processes. The comparative analyses also revealed that, for both mammals and fishes, genes encoding extracellular proteins are preferentially targeted by positive selection, indicating that adaptive evolution occurs more often in the extra-cellular environment rather than inside the cell. Moreover, I present here the first genome-wide characterization of neutrally-evolving regions of protein-coding genes. This analysis revealed an unexpectedly high proportion of genes containing both positively selected motifs and neutrally-evolving regions, uncovering a strong link between neutral evolution and positive selection. I speculate that neutrally-evolving regions are a major source of novelties screened by natural selection

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    • 

    corecore